If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-25n-144=0
a = 1; b = -25; c = -144;
Δ = b2-4ac
Δ = -252-4·1·(-144)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{1201}}{2*1}=\frac{25-\sqrt{1201}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{1201}}{2*1}=\frac{25+\sqrt{1201}}{2} $
| 5=h÷2-3 | | r/10=3-6/2 | | 3(2x+7)+x=14 | | 0=23.16(t)+4.9(t^2) | | 7(w-3)=-5(2w-3)-4w | | R(x)=(-80x+4000)(0.5x+1) | | 2b+11b=21 | | 5x^2+15x+55=0 | | 71=2x+3 | | 7(b-4)=5(b+4)+6 | | 5t+40=88 | | 3x=18/36 | | v/3-2=2 | | 30/15=6x | | x+4x=-3 | | 5t+3t=88 | | 8/4=7/r-8 | | 5t+3t-40=80 | | 52-36=4c | | 3=5–2p | | 8/17=11/17-5/17x | | 5x-x=x+16-x=16 | | 2x+(2x+9)=33 | | -4(y+3)+32=4(6-y) | | -0.7x+1.15=-0.4x+1.75 | | x-7/9=-8/9 | | q^2+23q=0 | | (n/3)-(5n/6)=(1/3) | | 30/42=x/100 | | 7x-5=5+7x | | -3y+21=-6(y-3) | | 4(8-x)+36=102-2(3x+24) |